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GENERAL INTRODUCTION 

Background 

The recognition of wetlands as ecologically valuable landscape components has 

occurred only within the last two decades. In a review of research on the role of 

freshwater wetlands and water quality, Nixon and Lee (1986) note that "much of the effort 

during this time has been confined to studies of productivity, habitat value, and other 

aspects of wetlands that do not necessarily yield the kinds of information necessary to 

evaluate the links between wetlands and adjacent waters in terms of nutrients, heavy 

metals, or other pollutants." They emphasized this point because "some of those charged 

with constructing, managing, or regulating the uses of these environments may find 

themselves discouraged on learning that the evidence necessary to resolve such a basic 

question as the role of wetlands in water quality is so often preliminary, incomplete, 

flawed, of lacking." 

Much of the current interest in the role of wetlands in providing water quality 

functions can be traced to the practice of using wetlands for small-scale sewage or runoff . 

treatment (Kadlec and Tilton 1979, Whigham 1982). The primary assumption of this 

practice is that wetlands are sinks in the biogeochemical cycles of carbon, nutrients, heavy 

metals, and various other pollutants. However, in the case of nitrogen and phosphorus, 

Nixon and Lee (1986) state that "while wetlands appear to serve as sinks for these 

elements, the amount of these materials retained varies widely and does not appear to 

correlate in any simple way with inputs. " These authors state that "we need to learn more 

before the scientific community is in a position to make a credible quantitative assessment 

of the potential role of wetlands in water quality improvement. " 

The recognition of the water quality functions and values of wetlands has recently 

led to increasing focus on the utilization of restored or created wetlands as nutrient sinks 

for non-point source pollution in agricultural landscapes. Based on both wetland drainage 

and surface water quality criteria, one of the regions where the restoration of wetlands may 

result in significant water quality improvements is the Midwestern com belt (van der Valk 

and Jolly 1992). In Iowa, for example, 99% of the native wetlands have been drained and 

over 90% of the total land area is used for agricultural production. Nitrate (NO3") is one 

of the agricultural chemical contaminants of foremost concern in the Midwestern com belt 
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because of its potential impact on public health and ecosystem function, and because of the 

widespread use of nitrogen in modem agriculture. Non-point loads of inorganic nitrogen 

to surface waters in the region are among the highest in the country (Omemik 1977) and 

nitrate concentrations have continued to increase in many surface waters (Hallberg 1989). 

If wetlands are to serve as long term sinks for nitrogen, differences in inputs and 

outputs must reflect net storage in the system through accumulation and burial in the 

sediments, or net loss from the system through gaseous evolution of NH3, N2O, N2. 

Denitrification is the process whereby nitrate is reduced by facultatively anaerobic bacteria 

to nitrous oxides or dinitrogen gas. The reaction occurs under anoxic conditions (Eh = 

+350 to +100 mV), where nitrate is used in place of oxygen as the terminal electron 

acceptor during the oxidation of organic matter (Tiedje 1988). Several reviews have 

addressed the biochemistry and physiology of denitrification (Painter 1970, Payne 1973, 

Focht and Verstraete 1977, Knowles 1982, Tiedje 1988), and the rates of denitrification in 

marine (Knowles 1982, Hattori 1983), stream, river, lake and subtidal coastal marine 

ecosystems (Seitzinger 1988, 1990). 

Most of the published papers dealing with freshwater wetlands and water quality 

note the probable importance of denitrification. In fact, with rare exception, denitrification 

is cited as the primary reason wetlands may serve as nitrogen sinks (Lee et al. 1975, van 

der Valk et al. 1979, Davis et al. 1981, Gersberg et al. 1983). However, there have been 

few measurements of denitrification in freshwater marshes (Howard-Williams 1985, Nixon 

and Lee 1986, Bowden 1987, Seitzinger 1988, Neely and Baker 1989). As Neely and 

Baker (1989) note, denitrification is only assumed to be an important process in many 

freshwater wetlands based largely on circumstantial evidence; first, that conditions in the 

wetlands are suitable for denitrification (anaerobic conditions and a large base of organic 

carbon) and, second, that nitrate disappears rapidly from water overlying wetland 

sediments. Research is needed to assess realistic nitrate transformation rates, to determine 

the fate of transformed nitrate, and to identify factors which affect the rates of nitrate 

transformation or limit freshwater wetlands in the sustained removal of externally loaded 

nitrate. 
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An explanation of the dissertation organization 

The research that is presented in this dissertation addressed the transformation and 

fate of nitrate in northern prairie wetlands. The research utilized a combination of wetland 

mesocosms and microcosms to conduct controlled and replicated experiments involving 

nitrate transformations with the overall objectives: 1) to estimate the capacity of restored or 

natural northern prairie wetlands as sinks for externally loaded nitrate, 2) to determine the 

fate of transformed nitrate, and 3) to begin to identify the factors which limit the sustained 

abilities of northern prairie wetlands to act as sinks for nitrate. 

The dissertation is divided into three sections which are manuscripts intended for 

publication and are followed by a General Summary. References cited in the General 

Introduction and General Summary follow the General Summary. 

Paper I describes experiments investigating the transformation and fate of nitrate in 

northern prairie wetlands. Experimental wetland mesocosms were utilized to obtain 

realistic estimates of the rates of nitrate transformation, to conduct tracer studies 

designed to determine the fate of externally loaded nitrate, and to investigate the effects of 

nitrate loading pattern on transformation rates. 

Paper II describes the results of experiments investigating the role of decaying plant 

litter in the transformation and fate of nitrate in northern prairie wetlands. First, to 

establish the presence of anaerobic microzones, oxygen distribution at sediment-water and 

litter-water interfaces was measured using a dissolved oxygen microelectrode. Secondly, 

the transformation and fate of nitrate in the presence and absence of litter was examined at 

two different scales. Enclosures placed in situ within wetland mesocosms were utilized to 

provide field scale estimates and sediment-water microcosms were utilized to allow greater 

experimental control and the use of tracers. 

Paper III describes the results of tracer studies conducted in sediment-water 

microcosms containing intact sediment cores designed to determine the effects of nitrate 

concentration in the overlying water on nitrate flux. The intact sediment cores were 

collected from within the experimental mesocosms and from a recently restored northern 

prairie wetland. 
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PAPER I; TRANSFORMATION AND FATE OF NITRATE IN NORTHERN 
PRAIRIE WETLANDS 
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INTRODUCTION 

A recognition of the water quality functions and values of wetiands has recently led 

to increasing focus on the utilization of restored or created wetlands as nutrient sinks for 

non-point source pollution in agricultural landscapes. Based on both wetiand drainage and 

surface water quality criteria, one of the regions where the restoration of wetiands may 

result in significant water quality improvement is the Midwestern com belt (van der Valk 

and Jolly 1992). In Iowa, for example, 99% of the native wetiands have been drained and 

over 90% of the total land area is used for agricultural production. 

Nitrate (NOg") is one of the agricultural chemical contaminants of foremost concern 

in the Midwestern com belt because of its potential impact on public health and ecosystem 

function, and because of the widespread use of nitrogen in modern agriculture. Non-point 

loads of inorganic nitrogen to surface waters in the region are among the highest in the 

country (Omemik 1977) and nitrate concentrations have continued to increase in many 

surface waters (Hallberg 1989). 

If wetiands are to serve as long term sinks for externally loaded nitrogen, 

differences in inputs and outputs must reflect net storage in the system through 

accumulation and burial in the sediments, or net loss from the system through gaseous 

evolution of NH3, N2O, or N2. Reference to works reviewing the biogeochemistry of 

nitrogen in freshwater wetiands, however, reveals that the importance of these processes is 

not well documented (Howard-Williams 1985, Nixon and Lee 1986, Bowden 1987). The 

few studies of the cycling of nitrogen in northern prairie wetiands have generally 

demonstrated that natural and artificial wetiands can serve, at least on a seasonal basis, as 

nitrogen sinks (van der Valk et al. 1979, Davis et al. 1981). 

Most of the published papers dealing with freshwater wetiands and water quality 

note the probable importance of denitrification (Lee et al, 1975, Kadlec 1979, van der Valk 

1979, Davis et al. 1981, Gersberg et al. 1983). However, there have been few actual 

measurements of denitrification in freshwater marshes (Nixon and Lee 1986, Bowden 

1987, Seitzinger 1988, Neely and Baker 1989). As Neely and Baker (1989) note, 

denitrification is only assumed to be an important process in many freshwater wetlands 

based largely on circumstantial evidence, first that conditions in the wetiands are suitable 

for denitrification (anaerobic conditions and a large base of organic carbon) and second that 

nitrate disappears rapidly from water overlying wetiand sediments. 
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Increased nitrate loading to wetlands in agricultural watersheds might be expected 

to stimulate denitrification resulting from increases in activities and/or population densities 

of denitrifying bacteria. However, there have been few measurements of the effects of 

loading patterns or other factors which might affect the denitrification capacity of wetlands 

receiving nitrate loads. 

If restored or created wetlands are to be utilized as nitrogen sinks in agricultural 

landscapes, we need to greatly increase our understanding of the transformation and fate of 

non-point source nitrate within these systems. Such information is necessary to make 

credible management recommendations in terms of site selection and design criteria and to 

estimate sustainable nitrate loading rates. 
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METHODS 

Wetland mesocosms were used to conduct controlled and replicated experiments 

investigating the transformation and fate of nitrate in northern prairie wetlands. The 

mesocosms were utilized to obtain realistic, ecosystem level estimates of the rates of nitrate 

transformation and to investigate the effects of nitrate loading pattern on transformation 

rates and processes within the systems. tracer experiments were also conducted to 

determine the fate of the externally loaded nitrate and the effect of nitrate loading pattern 

on denitrification capacity. 

Description of experimental wetland mesocosm facility 

These studies were conducted at the Iowa State University Experimental Wetland 

Facility (Crumpton et al. in press). This facility consists of 48 wetland mesocosms which 

were completed in 1989 (Figures 1 and 2). The mesocosms were constructed using uv 

stabilized polyethylene tanks which are 3.35 m in diameter and 90 cm deep, thus providing 

for approximately 9 m^ of wetland in each mesocosm (Figure 3). The tanks were filled to 

a depth of 60 cm with an Okoboji silty clay loam (cumulic haplaquoll), planted with cattail 

rhizomes {Typha glauca Godr.), and flooded. The soil used in the mesocosms was 

excavated from a recently restored wetland at Jim Ketelsen Greenwing Marsh east of 

Ames, lA. 

A deep irrigation well supplies feedwater for the mesocosms. Chemical 

characteristics of the unmodified feedwater were analyzed by the Analytical Services 

Laboratory of the Department of Civil and Construction Engineering, Iowa State 

University. The concentrations of anions and cations in the feedwater are similar to those 

found in wetlands in glaciated terrain (LaBaugh 1989) yet the concentrations of nitrogen 

and phosphorus are low enough to allow for experimental addition of these two elements 

(Table 1). For the research described here, the mesocosms were configured with in-line 

fertilizer injectors which allowed for the controlled addition of desired chemicals directly 

into the irrigation water. Mesocosms are individually valved and water is supplied to each 

unit through spray nozzles around its inside circumference. Bulkhead adapters for surface 

drainage are located 5 cm above the sediment to prevent loss of all water in the event of a 

leak. Water level is maintained through the use of variable height standpipes. 
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Figure 1. Aerial view of experimental wetland mesocosm complex. One cm equals 7.5 m 

Figure 2. Ground level view of experimental wetland mesocosm complex 
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Figure 3. Cross sectional diagram of a mesocosm 
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Table 1, Chemical characteristics of feedwater to mesocosms. 

Calcium (Ca"^) 
Magnesium (Mg"^) 
Sodium (Na"^) 
Potassium (K"^) 
Chloride (Cl") 
Sulfate (SO4") 
Carbonate (COg^") 
Bicarbonate (HCO3") 
Total phosphorus 
Ortho-phosphorus 
Total Kjeldahl nitrogen 
Nitrate+nitrite (N03"+N02") 

100 mg L" 
34.2 mgL" 
12.8 mg L" 
5.4 mgL" 

26.7 mgL" 
75.3 mgL" 
n.d. mg L" 

357 mg L" 
0.059 mg L" as P 
0.007 mg L" as P 
0.58 mg L" as N 
0.07 mg L" as N 
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Whole mesocosm studies 

In 1990 and 1991, a series of nitrate batch dose experiments were conducted within 

the wetland mesocosms to investigate the transformation and fate of externally loaded 

nitrate within northern prairie wetlands. In all experiments, mesocosms were dosed with 

sodium nitrate solutions and the decline in nitrate-nitrogen concentration in the overlying 

water was measured over time. The mesocosms were drained to 5 cm of overlying water 

and reflooded to a depth of approximately 25 cm with nitrate enriched feedwater. Each 

mesocosm was sampled by collecting 50 ml of overlying water from three separate 

locations. These aliquots were composited and a 20 ml subsample was filtered through a 

0.2 micron filter and preserved with 0.06 ml concentrated HCl or 0.02 ml concentrated 

H2SO4. Sampling continued until the nitrate-nitrogen concentration in the overlying water 

dropped below detection limits of about 0.05 mg N L"^. Nitrate-nitrogen was assayed 

using a second-derivative spectrophotometric procedure (Crumpton et al. 1992). The 

water level in each mesocosm was recorded daily at the time of sampling to correct for the 

effect of évapotranspiration on concentration. Rainfall was also recorded daily during 

sampling periods and assayed for nitrate-nitrogen. All concentrations of nitrate-nitrogen 

within the mesocosms were corrected for changes related to rainwater dilution or nitrate-

nitrogen addition. 

The first experimental nitrate addition to thirty six of the mesocosms was performed 

on August 7, 1990. After addition, the nitrate-nitrogen concentration in the overlying 

water was 7.3 mg L'^. Each mesocosm was sampled every six hours for the first 48 hours 

and then every 24 hours thereafter. The second nitrate addition to the same thirty six 

mesocosms was performed on August 29, 1990. After addition the nitrate-nitrogen 

concentration in the overlying water was 7.7 mg L'^ and each mesocosm was sampled 

every 24 hours. The third experimental addition of nitrate was made to a subset of 

eighteen of the mesocosms on October 16, 1990 and samples were again collected from 

each mesocosm every 24 hours. During a subset of the dosing studies in 1990 one of the 

mesocosms was instrumented with a water quality monitoring device capable of 

continuously recording temperature, pH and dissolved oxygen. 

Based on initial results from the 1990 season, an effort was made to further define 

the effects of nitrate loading rate and pattern on the transformation and fate of nitrate. In 

1991, twelve mesocosms were assigned to treatments which varied the frequency of nitrate 
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loading to the systems. Within these mesocosms, four received no nitrate addition at any 

time throughout the summer, four received additions of NOg'-N of approximately 10 mg 

on six occasions throughout the summer and fall during the batch dose experiments 

(intermediate loading), and four received additions of nitrate frequently enough to 

continuously maintain an elevated concentration of nitrate (chronic loading). For the 

chronic loading treatment, a concentrated solution of NaNO^ was applied to each 

mesocosm with a hand sprayer approximately every third day. The mass of nitrogen 

applied was equivalent to 10 mg L"^ NOg'-N and the concentration of NOg'-N in these 

mesocosms was maintained above 1 mg L"^ NOg'-N throughout the season. 

Nitrate addition experiments (intermediate loading) were performed six times 

during the summer and fall of 1991 (June 12, July 8, August 5, August 28, September 6, 

and October 30). This allowed an evaluation of seasonal pattern in nitrate transformation 

rates as well as the comparison of rates with those estimated during 1990. Sampling and 

analysis procedures used for batch dose experiments were similar to those described for 

1990 with a regular sampling interval of 24 hours. During the August 5 batch dose 

experiment, mesocosms were sampled at sunrise and sunset in addition to the regular 

sampling interval. During the October 30 batch dose experiment temperatures dropped 

well below freezing and as much as 15 cm of ice formed on the water surface. Sampling 

was maintained by drilling three holes through the ice and compositing these samples. 

Vegetation and studies 

In conjunction with the September 6, 1991 dosing experiment, stable nitrogen 

isotope (^^N) tracer experiments were conducted within enclosures inserted to isolate 

portions of the experimental wetland mesocosms. The enclosures are designed for short 

term experiments and allow many more manipulations than are possible in the whole 

mesocosms. The enclosures consist of 75 cm diameter polyethylene cylinders, 90 cm tall, 

with a wall thickness of 0.3 cm. The enclosures were driven at least six cm into the 

sediment of the mesocosm, enclosing 0.44 m^ of intact sediment and approximately 112 L 

of overlying water. 

Enclosures were inserted into each of three of the mesocosms receiving intermediate 

and chronic nitrate loading patterns. As part of the routine dosing experiment conducted 

on September 5, 1991, the mesocosms were drained to 5 cm of overlying water and 
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reflooded to a depth of approximately 25 cm with nitrate enriched feedwater. The 

concentration of NOg'-N in the mesocosms after addition was approximately 9 mg L"^. 

Simultaneously, the water within the polyethylene enclosures was pumped out and replaced 

with and CI enriched water. The enriched water (32 atom % was 

made in batch to contain approximately 9 mg L"^ ^^NOg'-N and 85 mg NaCl-Cl, 

The chloride was added as a conservative tracer to estimate if there was any transfer of 

solution between the water within the enclosure and the whole mesocosm or if simple 

diffusion into the sediment was significant. The chloride concentration added within the 

enclosures was approximately twice the concentration of that in the whole mesocosm. 

The enclosures were sampled by collecting 50 ml of overlying water from three 

separate locations. These aliquots were composited and a 20 ml subsample was filtered 

through a 0.2 micron filter and preserved with 0.02 ml concentrated H2SO4. Each 

mesocosm and enclosure was sampled daily until the nitrate concentration in the overlying 

water dropped below detection limits of about 0.05 mg N L"^. NO)"-N was assayed using 

a second-derivative spectrophotometric procedure (Crumpton et al. 1992) and Cl was 

assayed by titration using the argentometric method (American Public Health Association 

1989). 

When the concentration of nitrate had dropped below detection limits, the contents 

of the enclosures were destructively sampled to determine the fate of the added ^^NOg'. 

Live cattails were cut off at the sediment surface and divided into an older, reproductive 

cohort (live old), and a newer, purely vegetative cohort (live new). Dead standing cattails 

were cut off at the sediment surface. Cattail litter was separated and collected and cattail 

roots were cut off at the sediment surface. The water was then pumped out of enclosures 

at the same time that the mesocosms were drained. The top two cm of sediment within the 

enclosures was removed, homogenized, and subsampled. Cattail rhizomes were removed 

from within the area of the enclosures and the remaining sediment below two cm 

homogenized and subsampled. Total cattail densities within each mesocosm were 

determined in November 1991. 

Sediment and water samples for analyses were frozen immediately upon return 

to the laboratory. The sediment was then lyophilized, subsampled, and finely ground using 

a mortar and pestle. Rhizomes, litter and root samples were gently washed to remove 

adhering sediment and oven-dried at 80°C to constant weight. After weighing, the plant 
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samples were coarse ground in a 10-mesh Wiley mill, subsampled, and finely ground in a 

60-mesh Wiley mill. Carbon and nitrogen contents of plant fractions were assayed using a 

Carlo Erba NA1500 N/C/S analyzer. 

Determination of percentages was carried out in the laboratory of Dr. Alfred 

Blackmer of the Department of Agronomy at Iowa State University. Procedures are as 

described by Sanchez and Blackmer (1988). Exchangeable ammonium-N and nitrate (plus 

nitrite)-N contents of each sediment sample were determined by extraction with 2 N KCl 

and steam distillation with magnesium oxide and Devarda alloy as described by Keeney 

and Nelson (1982). Because distillate from these analyses were used for 

determinations, 5 ml of an ammonium nitrate standard containing 15 ug ammonium-N 

ml"^ was added to each aliquot (20 ml) of sediment extract distilled. This practice assured 

that each sample contained enough N to be within the working range of the mass 

spectrometer used for ^^N determinations. Distillates from the first aliquots were collected 

in boric acid indicator solution and then titrated with acid as described by Keeney and 

Nelson (1982). Distillates from the second aliquots were collected in 2 ml of 0.08 N 

H2SO4, concentrated by evaporation of water to a volume of about 2 ml, and stored for 

analysis of ^^N. The permanganate-reduced iron modification of the Kjeldahl procedure 

(Bremner and Mulvaney 1982) was used to determine total nitrogen contents of sediment 

and plant tissue samples. 

Determinations of ^^N in sediments, sediment extracts, and plant samples were 

performed by reacting the concentrated distillates with sodium hypobromite in evacuated 

Rittenburg flasks as described by Hauck (1982) and injecting the resulting dinitrogen gas 

into a Varian MAT 250 mass spectrometer. Atom percentages ^^N in these distillates, 

concentrations of ^^N-derived nitrate and ammonium nitrogen, and concentrations of ^^N-

derived total nitrogen were calculated as in Sanchez and Blackmer (1988). 

Statistical calculations follow Steel and Torrie (1980) and Day and Quinn (1989). 

Analysis of variance and orthogonal planned comparisons were used to determine 

significance of treatments. Differences between means for ANOVA and planned 

comparisons were considered significant at p ^ 0.05. 
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RESULTS AND DISCUSSION 

Whole mesocosm studies 

All of the mesocosm studies during 1990 and 1991 confirm the considerable 

capacity of wetlands to remove nitrate. Even under highly aerobic conditions, nitrate 

concentrations declined rapidly in all of the mesocosm experiments (Figures 4 and 5). 

When dosed with approximately 10 mg L"^ NOg'-N, (the MCL for drinking water), the 

experimental wetlands generally reduced the nitrate concentration to near detection limits 

within five days. The only exceptions to this were dosing experiments conducted late in 

the season when temperatures were much lower. 

However, as the dosing experiment conducted on October 30, 1991 demonstrates, 

appreciable nitrate loss occurs within these systems even when water temperatures are near 

freezing. During this experiment the initial nitrate concentration within all treatment 

mesocosms was 13.7 mg NOg'-N L"^. On the second day after dosing, nearly 7.6 cm of 

rain caused a rapid drop in nitrate concentration, from an average of 12.6 mg NO^'-N L"^ 

on day 1 to 9.6 mg NOg'-N L"^ on day 2. On the third day after dosing, temperatures 

plummeted to well below freezing and ice rapidly developed. Nitrate concentration 

increased over the next two days up to 11.5 mg NOg'-N L"^. The ice reached its greatest 

thickness of nearly 15 cm on day 11 and was nearly all melted again by day 18. Between 

days 4 and 11, when the ice was thickening, the concentration of nitrate slowly declined 

from an average within treatment mesocosms of 11.5 mg NOg'-N L'^ to 9.0 mg NOg'-N 

L"^. After day 11, as the ice was decreasing in thickness, the concentration of nitrate 

declined more rapidly and was approaching detection limits by day 23. 

Rates of nitrate loss on a sediment area basis (g N m"^ day"^) observed within these 

experimental wetland mesocosms are among the highest reported in the literature for any 

wetland system (Seitzinger 1990, Johnston 1991). Nitrate loss rates recorded during 1990 

ranged around 0.5 to 0.8 grams of nitrate-nitrogen per square meter of sediment per day in 

the presence of several mg nitrate-N L"^ or more. During 1991, nitrate loss rates were 

consistently higher, reaching over 1.5 g N m"^ day"^ during the My 8 dosing. This may 

reflect the maturation of the mesocosms as ecosystems, in particular the buildup of 

decaying cattail litter which provides anaerobic microsites necessary for nitrate reduction 

(Isenhart 1992). 
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Nitrate loss rates in all mesocosm experiments in 1990 reached a peak in the range 

of 0.6 to 0.7 g N day"^ on the second day after addition (Figure 6). This indicates 

that there was a period of equilibration required following the replacement of the water in 

the mesocosms during experimental addition. The nitrate enriched feedwater added to 

mesocosms was generally colder than the water it replaced and approximately 24 hours was 

required for temperature equilibration (Figure 7). Nitrate loss rates decline in the 

following days, coincident with the decrease in concentration of nitrate in the overlying 

water. This pattern was quite clear for the first two mesocosm experiments but less so for 

the third experiment during which nitrate concentrations declined more slowly, perhaps 

related to the lower temperatures during the third experiment. In contrast to 1990, with 

the exception of the August 5 experiment, the nitrate loss rate in all experiments in 1991 

was highest on the first day after addition (Figure 8). Nitrate loss rate then declines in the 

following days, again coincident with the decrease in nitrate concentration in the overlying 

water. 

The effect of nitrate concentration within the overlying water on nitrate loss rate is 

illustrated in Figure 9 which includes data from all mesocosms during the August 29, 1990 

dosing experiment. Nitrate loss rates are clearly a function of the concentration of nitrate 

in the overlying water over a wide range of concentrations. This is consistent with models 

of denitrification in agricultural streams which suggest that in the presence of high external 

nitrate loads, denitrification rates are limited by substrate transport and controlled by the 

nitrate concentration in the overlying water and the effective length of the diffusion path 

between the overlying water and anaerobic sites of denitrification (Christensen et al. 1990). 

Higher concentrations of nitrate in the overlying water of the mesocosms increases the rate 

of nitrate diffusion to anaerobic sites, resulting in higher nitrate loss rates. Nitrate loss 

rates then decline coincident with the concentration of nitrate, reflecting the lower diffusion 

gradient. 

Factors controlling the effective length of the diffusion path of nitrate to anaerobic 

sites include temperature, the effective surface area of sediment and litter to provide 

anaerobic sites, and oxygen concentrations. Within the mesocosms, temperature can be 

expected to demonstrate daily as well as seasonal fluctuations (Figure 7). The effect of 

temperature is illustrated by the lower nitrate loss rates during the mesocosm dosing 

experiment conducted in October 1990. It is unclear from these studies, however, whether 



www.manaraa.com

10 

19 

August 7-13 

en 

c 
(U 
en 
O 

0 
-h-' 

O 

0 

August 29 -
September 3 

October 16—24 

2 3 4 5 6 

Time (Days) 

8 

Figure 6. Nitrate-nitrogen loss rate in mesocosms following experimental additions in 
1990. Error bars indicate +. one standard error (n = 36 on Aug. 7 and Aug 
29, n = 18 on Oct. 29) 



www.manaraa.com

30 -1 

25 -

TEMP. 

20 -

15 -

10 

pH 

DO. 

239 241 243 245 247 249 251 253 255 257 259 

JULIAN DAY 

Figure 7. Dissolved oxygen (mg L'^), pH, and temperature (°C) in a representative mesocosm during the August 29, 1990 
mesocosm batch dose study. Experimental nitrate addition was made on Julian day 241 



www.manaraa.com

I 
>\ 
D 

"a 
Csl 

cn 

CO 
CO 
O 

c 
CD 
cn 
O 

CD 

D 

2.0 

1.5 +  

1.0 

0.5 

0.0 

2,0 

1.5 

1.0 

0.5 — 

0 

.-tl 0.0 

0 

June 12 
• Intermediate 

• Chronic 

1 

August 28 
• Intermediate 

• Chronic 

1 

0 

0 

July 8 
• Intermediate 

* Chronic 

1 

September 6 
• Intermediate 

• Chronic 

1 2 3 

Time (days) 

August 5 
• Intermediate 

• Chronic 

1 

w 

Figure 8. Nitrate-nitrogen loss rate in mesocosms following experimental additions in 1991. Error bars indicate 4% one 
standard error (n = 4) 



www.manaraa.com

22 

CO 
CO 
o 

c I 
CD >. 
CD O 
O T? 

CD 
-t-' 

D 

CM 

E 

1.2 

1.0 — 

0.8 — 

0.6 --

0.4 

0 . 2  

0.0 

O Day One 

V Day Two 

Day Three 

Day Four 

0 8 
-1 

1 0  

Nitrate-nitrogen (mg L ) 

Figure 9. Nitrate-nitrogen loss rate versus nitrate-nitrogen concentration for the first four 
days after experimental nitrate addition on August 29, 1990 



www.manaraa.com

23 

temperature effects are manifested predominantly in rates of nitrate and oxygen diffusion 

or in rates of metabolic processes. 

Oxygen concentration has also been demonstrated to be an important factor limiting 

nitrate loss via denitrification under certain conditions (Tiedje 1989). The oxygen status of 

a habitat is controlled by the rate of oxygen supply to that site through diffusion or 

production by photosynthesis and the rate of oxygen consumption by respiration. Within 

the mesocosms, dissolved oxygen demonstrates dramatic daily as well as seasonal 

fluctuations (Figure 7). The dissolved oxygen concentration is shown to vary by as much 

8 mg L"^ within a 24 hour period. Such shifts in dissolved oxygen, can be expected to 

have significant effects on nitrate loss rates. 

Results of the sunrise-sunset samplings taken during the August 5, 1991 dosing 

experiment illustrate the control that light exposure has on the nitrate loss rate within the 

mesocosms (Figure 10). Rates of nitrate disappearance (g N m"^ day"^) within the 

mesocosms demonstrate a distinct diurnal pattern. During the day, when photosynthesis 

elevates the concentration of dissolved oxygen within the mesocosms, the nitrate loss rate 

is lower. At night, when dissolved oxygen concentrations decline, the nitrate loss rate is 

higher. The overall negative slope apparent in nitrate loss rate is again the result of the 

declining nitrate concentration in the overlying water. 

Such diurnal patterns in nitrate loss rate can be explained by algal photosynthetic 

oxygen production causing a deeper extension of oxic surface zones in biofilms and 

sediments (Sorensen and Revsbech 1990). This increases the diffusion path of externally 

loaded nitrate to underlying anaerobic zones which are the primary sites of denitrification, 

resulting in lower nitrate loss rates. The absence of photosynthetic oxygen production will 

thus result in higher nitrate loss rates during the night. While previous researchers have 

also documented lower denitrification rates in aquatic systems during the day than at night 

(Andersen et al. 1984, Nielsen et al. 1990 a,b), these studies have generally been 

conducted in the laboratory in sediment-water microcosms. The studies conducted within 

the wetland mesocosms provide realistic, ecosystem level estimates of the effects of 

photosynthetic oxygen production on denitrification rates. 

Rates of nitrate removal per unit area of wetland are dependent upon both the 

concentration of nitrate in the overlying water and the specific rate or nitrate removal 
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capacity of the wetland. These parameters can be related by the equation F = vg * C 

where F is the nitrate loss rate and C is the average nitrate concentration in the overlying 

water. The velocity of deposition (vg) of nitrogen for each mesocosm for each experiment 

was calculated based on the following formula: 

vg = F/C 

Where 

F= the loss rate of nitrate for each period in g N m"^ day"^ and, 

C= the average concentration of nitrate in g N m"^ 

Vg, then, is the velocity of deposition in m day"^ and expresses the nitrate removal 

capacity of the wetland. 

Velocities of deposition for each mesocosm experiment during 1990 are shown in 

Figure 11. The velocity of deposition generally increased over time since addition during 

the August 7 and August 23 experiments. During the October 16 experiment, the velocity 

of deposition was lower and did not demonstrate the same pattern of increase over time, 

likely a result of temperatures being much lower during the third experiment than in the 

first two experiments. 

Mesocosm experiments conducted during 1990 demonstrated that the velocity of 

deposition increased during each of the first two mesocosm experiments, coincident with 

the decline in nitrate concentrations. The increase in the velocity of deposition during each 

of these experiments suggested that nitrate addition stimulated increases in activities and/or 

population densities of denitrifying bacteria. This was also consistent with the lower and 

more stable velocity of deposition observed during the last mesocosm experiment, since the 

lower temperatures during that experiment would have slowed population growth. These 

patterns suggest that the nitrate removal capacity of wetlands might be greatly enhanced if 

nitrate loads are sufficient to maintain high population densities of denitrifying organisms. 

The nitrate loading treatments imparted on a subset of the mesocosms during 1991 

were intended to further investigate this relationship between nitrate loading pattern and 

nitrate loss in wetland systems. In those mesocosms subjected to only occasional 
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(intermediate) nitrate loadings, it was expected that the pattern in velocity of deposition 

would be similar to that observed in 1990. In those mesocosms in which the concentration 

of nitrate was kept consistently elevated (chronic), it was expected that the observed 

velocity of deposition would initially be higher than in less exposed systems and would 

demonstrate no pattern during the dosing experiments. 

Patterns in nitrate loss and velocity of deposition observed during 1991, however, 

did not confirm these expectations. When comparing patterns in nitrate decline (Figure 5), 

there was no difference in nitrate loss between treated mesocosms during the June 12 

dosing, which marked the initiation of loading treatments. After the initiation of the nitrate 

loading treatments, however, the concentration of nitrate within the mesocosms declined 

more rapidly in those mesocosms which were subjected to the intermediate nitrate loading 

pattern versus the chronic pattern during each of the July 8, August 5, August 28, and 

September 6 dosing experiments. Nitrate loss rates were thus initially higher in those 

mesocosms subjected to the intermediate nitrate loading rate. As the concentration of 

nitrate was depleted faster in the intermediate loading mesocosms, however, nitrate loss 

rates remained higher in those mesocosms subjected to the chronic nitrate loading. There 

was no discernible pattern in velocity of deposition estimates for the mesocosm batch dose 

experiments conducted during 1991 (Figure 12). 

These results indicate that while nitrate exposure may indeed stimulate increases in 

activities and/or population densities of denitrifying bacteria within wetland systems that 

have received little or no prior nitrate exposure, other factors quickly become more 

proximate in the control of nitrate loss. For example, the faster nitrate removal observed 

during 1991 in those mesocosms exposed to the intermediate nitrate loading might be 

explained by a greater unmet assimilatory nitrogen demand within these systems. In those 

mesocosms exposed to chronic nitrate loading, this assimilatory nitrogen demand may be 

suppressed, resulting in slower nitrate removal. 

Vegetation studies 

The effect of nitrate loading on vegetation quantity and quality was examined by 

comparing treated mesocosms against control mesocosms which had also been drained and 

subsequently refilled with unamended feedwater on each of the dates of the batch dose 

experiments. If the overall effect of nitrate loading was significant, a planned comparison 



www.manaraa.com

0.8 

0.6 --

0.4 - -

g 0.2 

a 0 0 
0 

0.8 

O 0.6 

> 0.4 

0.2  

0.0 

0 

June 12 
• Intermediate 

V Chronic 

1 

August 28 
• Intermediate 

• Chronic 

X 

1 

July 8 
• Intermediate 

• Chronic 

0 1 

September 6 
• Intermediate 

* Chronic 

0 12 3 

Time (days) 

August 5 
• Intermediate 

• ChroTiic 

•t 

12 3 4 

Figure 12. Velocity of deposition (vg) of nitrate-nitrogen in mesocosms following experimental addition in 1991. Error 
bars indicate ±_ one standard error (n = 4) 



www.manaraa.com

29 

was used to determine if there was a significant difference between the intermediate and 

chronic nitrate loading rates. 

Nitrate loading induced a significant response in the quantity of Typha within the 

mesocosms but the pattern is difficult to interpret (Figure 13). The lower density of 

cattails within intermediate loading mesocosms compared to either zero or chronically 

loaded mesocosms was significant, yet there was no significant difference in cattail 

densities between control and chronically loaded mesocosms. 

In those mesocosms that received chronic nitrate loading, an additional, purely 

vegetative cohort of cattails grew late in the season (identified as live new cattails in Figure 

14). This effect of overall nitrate loading was significant, as was the effect of nitrate 

loading rate, with those mesocosms receiving the chronic nitrate loading having a 

significantly greater biomass of live new cattails. At the time of the experiment, 

the earlier cohort of cattails had begun to senesce while this later cohort remained a lush 

green. This suggests that Typha is capable of utilizing the externally loaded nitrate as a 

nitrogen source in meeting assimilatory demands. There was no significant difference in 

response to nitrate loading in the mass dry weight per area of any of the other plant 

fractions. 

Addition of nitrate to the mesocosms also had a significant effect on carbon and 

nitrogen content and carbon/nitrogen ratio of several plant fractions (Table 2). The 

difference in percent nitrogen in treated versus control mesocosms was significant in the 

live old cattail and rhizomes fractions, with percent nitrogen also significantly greater in 

those mesocosms subjected to the chronic nitrate loading rate. The difference in percent 

carbon in treated versus control mesocosms was significant only in the dead floating and 

rhizome fractions. There was, however, no significant difference in percent carbon 

between the intermediate and chronic nitrate loading rates in these two fractions. 

The difference in carbon/nitrogen ratio in the live old and rhizome fractions in 

treated versus control mesocosms was also significant. Within these two fractions, there 

was also a significant difference in carbon/nitrogen ratio between the loading rates, with 

live old cattails and rhizomes in those mesocosms receiving the chronic nitrate loading 

having a lower carbon/nitrogen ratio (Table 2). The greater percent nitrogen and lower 

carbon/nitrogen ratio of these fractions in the mesocosms subjected to the higher nitrate 
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Table 2. Percent carbon, percent nitrogen, and carbon/nitrogen ratio of Typha glauca (cattail) fractions within mesocosms 
receiving nitrate loading treatments. 

Fraction Loading Pattern Percent Carbon Percent Nitrogen C/N n 
Mean S.E.M. Mean S.E.M. Mean S.E.M. 

Dead Floating Control 45.36 0.64 1.37 0.11 34.2 3.3 4 Dead Floating 
Intermediate 42.24 0.52 1.45 0.04 29.3 1.0 4 
Chronic 43.11 0.79 1.58 0.04 27.4 0.8 4 

Dead Standing Control 47.57 0.25 0.50 0.02 96.6 4.0 4 Dead Standing 
Intermediate 46.54 0.51 0.41 0.03 115.9 6.6 4 
Chronic 46.97 0.12 0.56 0.02 83.6 2.9 4 

Live New Control 47.47 0.18 1.26 0.09 38.2 2.6 3 
Intermediate 47.25 0.48 1.54 0.10 31.0 1.8 3 
Chronic 46.45 0.43 1.40 0.09 33.6 2.0 3 

Live Old Control 46.33 0.19 0.63 0.04 74.7 4.6 3 
Intermediate 47.17 0.37 0.75 0.03 63.1 2.2 3 
Chronic 46.47 0.06 0.99 0.03 47.0 1.7 3 

Rhizomes Control 39.86 0.30 0.58 0.04 69.9 4.8 4 
Intermediate 40.55 0.41 0.67 0.05 61.3 3.9 4 
Chronic 39.56 0.96 1.08 0.03 36.5 0.4 4 

Roots Control 35.34 2.50 1.19 0.05 29.6 1.3 4 
Intermediate 33.57 4.10 1.10 0.09 30.1 1.3 4 
Chronic 31.55 2.99 1.08 0.06 29.3 2.3 4 



www.manaraa.com

33 

loading rates would also suggest that the plants are taking advantage of the externally 

loaded nitrate through assimilation and immobilization. 

studies 

Nitrate concentration in the overlying water decreased rapidly after addition in both 

the mesocosms and the polyethylene enclosures (Figure 15). At the same time, there was 

no significant difference in chloride concentration in the overlying water within the 

enclosures over the course of the experiment (Figure 16), indicating that there is no 

significant exchange of water between the mesocosms and the polyethylene enclosures. 

Nitrate concentration in the overlying water of the mesocosms did decline faster than 

within the enclosures in both treatments (Figure 15). This rate effect, however, was likely 

not great enough to differentially effect the fate of the loaded nitrate inside or outside the 

enclosures. 

The ^^N tracer studies were intended to determine the fate of externally loaded 

nitrate within the wetland mesocosms as well as to estimate the effect of nitrate loading 

pattern on nitrate fate. Data obtained from the ^^N studies were analyzed in two ways. 

Initially, the atom percent enrichments within the various plant and sediment nitrogen 

fractions are compared to natural abundance estimates obtained from control mesocosms to 

determine if there was a significant overall enrichment related to the added An 

enrichment in the atom percent ^^N within a nitrogen fraction indicates incorporation of 

nitrogen derived from the added ^^NOg". If the overall effect of nitrate loading was 

significant, a planned comparison was used to determine the significance of differences 

related to nitrate loading rate. 

Secondly, the atom percent enrichments were combined with the weights of each 

plant or sediment fraction and used to calculate a mass balance of the amount of ^^N 

remaining in each fraction within the enclosures compared to the amount of ^^N added as 

^^NOg". Differences in mass of ^^NOg" incorporated within a fraction will thus be the 

result of either a higher ^^N enrichment combined with equal fraction weights, or the same 

^^N enrichment combined with unequal fraction weights. 

Patterns observed in the percent ^^N enrichment of the various plant fractions 

(Table 3) indicate a larger unmet assimilatory nitrogen demand in those systems receiving 
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Figure 16. Chloride concentration in mesocosms (diamonds) and experimental enclosures 
(circles) following experimental chloride additions within experimental 
enclosures. Error bars indicate ± one standard error (n = 6) 
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Table 3. atom percent enrichment of plant fractions within enclosures placed in situ 
within wetland mesocosms 

Fraction Loading Pattern Atom % S.E.M. n 

Dead Floating Zero 0.375 0.001 4 
Intermediate 1.234 0.247 3 
Chronic 0.667 0.049 3 

Dead Standing Zero 0.378 0.001 4 
Intermediate 0.685 0.022 3 
Chronic 0.525 0.010 3 

Live New Zero 0.377 0.002 4 
Intermediate 0.484 0.033 3 
Chronic 0.842 0.263 3 

Live Old Zero 0.375 0.001 4 
Intermediate 0.735 0.076 3 
Chronic 0.441 0.011 3 

Rhizomes Zero 0.376 0.001 4 
Intermediate 0.984 0.039 3 
Chronic 0.760 0.094 3 

Rootlets Zero 0.372 0.000 4 
Intermediate 1.128 0.031 3 
Chronic 0.766 0.041 3 
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the lower nitrate loading rate. The atom percent enrichment of total nitrogen was 

significantly higher in all plant fractions in treated mesocosms except for the live new 

cattail fraction. The enrichment in these same plant fractions was also significantly 

greater within mesocosms receiving the intermediate nitrate loading rate. 

This pattern is repeated in the upper sediment fraction, with significantly greater 

enrichment in total nitrogen in treated mesocosms (Table 4). Within treated 

mesocosms, there was again a significantly greater enrichment in the total-N fraction in 

intermediately dosed mesocosms. Within the fraction, there was significantly 

higher enrichment in treated mesocosms, but no significant difference between treatment 

levels. There was also significantly greater enrichment in the NOg'-N fraction in 

treated mesocosms, likely in residual NOg'-N, but no significant difference between the 

two treatment levels. 

In sediment below two cm the atom percent enrichment was much less than in the 

upper two cm of sediment. There was, however, still significant enrichment of total-

N and in treated mesocosms. There was no significant difference in 

enrichment between the two treatment levels. There was also significant enrichment in the 

N03"-N fraction in treated mesocosms, likely in residual NOg'-N, but no significant 

difference in enrichment in this NOg'-N between the two treatment levels. 

The atom percent enrichment of each nitrogen fraction was combined with the mass 

of each fraction and used to calculate a mass balance of the amount of remaining in 

each fraction within the enclosures compared to the amount of added. The 

derived nitrogen in the organic nitrogen fraction in microcosms containing sediment was 

assumed to be the difference between derived nitrogen in the total nitrogen fraction 

minus the derived nitrogen in the ammonium and nitrate nitrogen fractions. Nitrogen 

lost as denitrification was assumed to be the difference between the amount of added 

and the sum of recovered in all fractions. 

Denitrification was confirmed to be the dominant fate of externally loaded nitrate, 

accounting for nearly 80 % of the removed from the overlying water in the 

experimental wetland mesocosms (Figure 17). The percent of nitrate denitrified was not 

significantly affected by the difference in intermediate versus chronic nitrate loading. 
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Table 4. atom percent enrichment of sediment fractions within enclosures placed in 
situ within wetland mesocosms 

Fraction Loading Pattern Atom % S.E.M. n 

Top Two Centimeters: 
Total Zero 0.371 0.000 4 

Intermediate 0.408 0.005 3 
Chronic 0.379 0.001 3 

Ammonium Zero 0.359 0.001 4 
Intermediate 0.979 0.179 3 
Chronic 0.573 0.012 2 

Nitrate Zero N.D. 
Intermediate 18.191 0.298 2 
Chronic 6.330 0.951 2 

Below Two Centimeters: 
Total Zero 0.371 0.000 4 

Intermediate 0.380 0.002 3 
Chronic 0.375 0.001 3 

Ammonium Zero 0.363 0.001 4 
Intermediate 0.590 0.075 3 
Chronic 0.477 0.035 3 

Nitrate Zero N.D. 
Intermediate 25.895 1.632 2 
Chronic 2.959 1.642 2 
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Approximately 14 percent of the added was found in the total nitrogen of 

the live cattail fraction, which is the sum of the live old, live new, root and rhizome 

fractions. There was no significant difference between nitrate loading rates in the percent 

of added found within the combined live plant fraction. A treatment difference is 

evident within the live new cattail fraction when the live plant fractions are broken out into 

live old, live new, root and rhizome fractions (Figure 18). The greater biomass of live 

new cattails in mesocosms subjected to chronic nitrate loading resulted in a significantly 

greater percent of the added found within this fraction. As atom percent enrichments 

were not significantly greater in live new cattails within chronically loaded mesocosms, 

this difference is being driven by the greater biomass of this live new cattail cohort. 

Within the total nitrogen of the dead plant fraction, which includes both dead 

floating and dead standing cattails, was found approximately 3.5 percent of the added 

(Figure 17). The difference between nitrate loading treatments in the percent of added 

found within the pooled dead plant fractions was not significant. When broken into 

the two components, however, there was a significantly greater percent of added 

found within the dead floating cattail litter within mesocosms subjected to intermediate 

nitrate loading (Figure 19). Most of this nitrogen demand in the dead floating litter could 

be attributed to assimilation and immobilization by the attached microbial community, with 

a greater demand within mesocosms subjected to the lower nitrate loadings. 

Total nitrogen of the pooled sediment components, which includes sediment of both 

the top two cm and below, accounted for 5.5 percent of the added within mesocosms 

subjected to intermediate nitrate loading, significantly greater than the 1.3 percent found in 

sediment within mesocosms subjected to chronic nitrate loading (Figure 17). Within these 

combined sediment layers, very little of the added was found within the NOg'-N and 

NH4"*"-N fractions and there was no significant difference between treatments (Figure 20). 

The greatest amount of was found in the organic-N fraction and the percent of added 

within this fraction was significantly greater in mesocosms subjected to intermediate 

nitrate loading. It is assumed that the majority of within this organic nitrogen fraction 

is a result of assimilation and immobilization by the microbial community at the sediment-

water interface. The greater amount of added immobilized to organic-N in 

sediments within mesocosms subjected to the lower nitrate loading again indicates a greater 

unmet assimilatory nitrogen demand in these systems. 
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Figure 18 Percent of transformed incorporated within live plant fractions 
following experimental addition to enclosures within intermediate and chronic 
dosed mesocosms. Error bars indicate ± one standard error (n as in Table 3) 
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Figure 19 Percent of transformed incorporated within dead plant fractions 
following experimental addition to enclosures within intermediate and chronic 
dosed mesocosms. Error bars indicate +. one standard error (n as in Table 3) 
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pooled sediment fractions following experimental addition to enclosures within 
intermediate and chronic dosed mesocosms. Error bars indicate +. one 
standard error (n as in Table 4) 



www.manaraa.com

44 

Within just the top two cm of sediment, the pattern is much the same as for the 

pooled sediment data (Figure 21). Very little of the added was found within the NO3" 

-N and NH4"'"-N fractions and there was no significant difference between treatments. 

The greatest amount of within the top two cm of sediment was found in the organic-N 

fraction and the percent of added within this fraction was significantly greater in 

mesocosms subjected to the lower nitrate loading. 

Very little of the added was found in sediment below the top two cm (Figure 

22) and there was no significant difference between loading treatments. The small amount 

of found within the sediment below two cm indicates that was not diffusing 

to deeper sediments. The small amount of ending up as in any of the sediment 

fractions indicates that dissimilatory nitrate reduction to ammonium did not occur to a 

significant extent. 

In summary, studies utilizing experimental wetland mesocosms confirm the 

considerable capacity of northern prairie wetlands to transform externally loaded nitrate. 

Even under highly aerobic conditions, nitrate concentrations declined rapidly in all of the 

mesocosm experiments. Rates of nitrate loss observed within the experimental wetland 

mesocosms are among the highest reported in the literature for any wetland system 

(Seitzinger 1990, Johnston 1991) and rates are strongly related to the concentration of 

nitrate in the overlying water. 

Data suggest that exposure to nitrate may affect nitrate loss rates in systems that 

have had little or no prior exposure to nitrate. However, following exposure to nitrate, 

other factors quickly become more proximate in the control of nitrate loss rate. 

Denitrification was confirmed to be the dominant sink for externally loaded nitrate, 

accounting for nearly 80% of the removed from the overlying water. The rest of 

the removed from the overlying water was immobilized. Approximately 14% of 

the added was immobilized within the various live cattail fractions and their 

associated microbes. The balance was immobilized in the sediment and submersed litter, 

most likely by microbes at the sediment-water interface and attached to decaying plant 

litter. Dissimilatory nitrate reduction to ammonium did not occur to a significant extent. 

There was no effect of chronic versus intermediate nitrate loadings on denitrification. The 

principal effect of chronic nitrate loading was to reduce the assimilatory nitrogen demand. 
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PAPER II; THE ROLE OF PLANT LITTER IN THE TRANSFORMATION AND 

FATE OF NITRATE IN NORTHERN PRAIRIE WETLANDS. 
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INTRODUCTION 

Although the importance of detritus in structuring aquatic food chains has long been 

realized, research to improve our understanding of the fine structure and associated biotic 

and resultant chemical alterations that characterizes detritus as a dynamic 

microenvironment has gained momentum only recently (Paerl 1984). This work has begun 

to stress the existence and importance of surface habitats, or microzones, as sites of altered 

metabolic activities among microorganisms associated with detrital particles and other 

surfaces (Bitton and Marshall 1980, Savage and Fletcher 1984). These observational 

studies of detrital microzones have laid the groundwork for more contemporary process-

oriented studies designed to better define physical-chemical gradients and the resultant 

promotion or acceleration of specific biochemical nutrient transformation reactions known 

to exhibit narrow tolerance ranges to environmental variables. 

It is clear that plant litter plays an important role in nutrient cycling within wetlands 

(Davis and van der Valk 1983, Jordan 1989). Initially, soluble nutrients are released from 

decomposing litter. Then, as the remaining structural components are rich in carbon and 

poor in nutrients, exogenous nutrients are immobilized by decomposers. Finally, as 

decomposition subsequently slows, mineralization gradually releases previously 

immobilized nutrients. 

While the role of plant litter in such decomposition processes is well known, little is 

known about the role that detritus and decaying plant litter plays in the mediation of 

biogeochemical transformations of nutrients in freshwater wetlands. The principal water 

quality function of vegetation or decaying plant litter may be in the creation of additional 

environments for microbial populations (Hammer 1992). Submersed stems, leaves, and 

decaying litter may provide substantial quantities of surface area for attachment of 

microbes and constitute thin-film reactive surfaces. The importance of this function, 

however, has not been documented. This study examines the importance of decaying plant 

litter in the transformation and fate of nitrate in northern prairie wetlands. 
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METHODS 

The role of decaying plant litter within wetlands in providing substrate for 

anaerobic microsites which facilitate nitrate reduction was investigated using two 

approaches. To establish the presence of anaerobic microzones, oxygen distribution at 

sediment-water and litter-water interfaces was measured using a dissolved oxygen 

microelectrode. In addition, the transformation and fate of nitrate in the presence and 

absence of litter was examined at two different scales. Enclosures placed in situ within 

wetland mesocosms provided field scale estimates and intact sediment-water microcosms 

collected from the wetland mesocosms allowed greater experimental control and the use of 

tracers. These studies were conducted at the Iowa State University Experimental 

Wetland Facility (Crumpton et al, in press). 

Oxygen profiles of intact surficial sediments and at the cattail litter-water interface 

were measured within sediment-water microcosms collected in November 1991 from the 

experimental wetland mesocosms. Intact sediment collection procedures were as described 

below. Oxygen profiles were measured with a Diamond General Model 737 Clark-style 

microelectrode which has a tip diameter of approximately 235 um. The O2 microelectrode 

was allowed to equilibrate for 0.5 hour prior to use. A micromanipulator was used to 

position the microelectrode, locate it at precise depths relative to the sediment or litter 

surface, and advance the electrode at precise intervals. The electrode output was recorded 

above the sediment-water or cattail litter-water interface and continuing down to the depth 

at which oxygen was no longer detected, or to well within the cattail litter. The position of 

the sediment or litter surface was determined by visible examination. Electrode current is 

calibrated based on electrode response (picoamps per mg O2 L'b determined from 

readings at the oxygen concentration in the overlying water and at zero O2 concentration in 

the anoxic sediment. Water temperatures were measured at the time profiles were taken. 

Duplicate oxygen profiles at the sediment-water interface were measured on 24 microcosms 

containing sediment. Oxygen profiles or oxygen measurements at the cattail litter surface 

were taken on over 30 randomly chosen pieces of litter. 

Enclosures placed in situ within experimental wetland mesocosms were utilized to 

investigate the role of decaying cattail litter in the transformation and fate of nitrate. The 

mesocosms were constructed using uv stabilized polyethylene tanks which are 3.35 m in 

diameter and 90 cm deep, thus providing for approximately 9 m^ of wetland in each 
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mesocosm. The tanks were filled to a depth of 60 cm with an Okoboji silty clay loam 

(cumulic haplaquoll), planted with cattail rhizomes (Typha Glauca Godr.), and flooded. A 

deep irrigation well supplies feedwater for the mesocosms. The mesocosms were 

configured with in-line fertilizer injectors which allowed for the controlled addition of 

desired chemicals directly into the irrigation water. Mesocosms are individually valved 

and water is supplied to each unit through spray nozzles around its inside circumference. 

Bulkhead adapters for surface drainage are located 5 cm above the sediment to prevent loss 

of all water in the event of a leak. Water level is maintained through the use of variable 

height standpipes. At the time of the enclosure study described, the mesocosms had 

received no nitrate addition during the preceding eight months. 

The experimental enclosures placed in situ within the wetland mesocosms consisted 

of 15 cm ID plexiglass cylinders which were pushed into the sediment of the mesocosms 

enclosing 177 cm^ of sediment and a water volume of approximately 6.5 L. Six 

enclosures were inserted into each of three mesocosms. All cattail litter was removed from 

the enclosures and the water was pumped out and replaced with water from control 

mesocosms which was amended with approximately 10 mg L"^ NaNOg'-N. Cattail litter 

approximating the amount present in each mesocosm was then added to each of three 

randomly chosen enclosures in each mesocosm. The other three enclosures within each 

mesocosm were left free of cattail litter. Each enclosure was sampled four times over the 

succeeding three days by collecting 20 mis of overlying water which was filtered through a 

0.2 micron filter and preserved with 0.02 ml concentrated HCl. Nitrate-nitrogen was 

assayed using a second-derivative spectrophotometric procedure (Crumpton et al. 1992). 

The role of decaying cattail litter in facilitating nitrate reduction was further 

investigated utilizing tracer techniques within sediment-water microcosms. 

Treatments for comparison were microcosms containing water overlying intact sediment, 

microcosms containing only decaying cattail litter within the water column, and 

microcosms containing both intact sediment and cattail litter. Controls consisted of 

microcosms which contained only water. There were twelve replicates for each treatment 

and controls. Sediment cores and cattail litter collected at the same time but not subjected 

to any of the treatments were used for the estimation of background atom percent. 

Intact sediment cores were collected in November 1991 from the experimental 

wetland mesocosms. Polycarbonate cylinders (5.1 cm ID, 15 cm long) were pushed into 
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the sediment, the top closed with a rubber stopper, and the column pulled out with the 

intact core of sediment, and the lower end stoppered. Upon return to the laboratory, the 

cores were standardized to a sediment height of 5 cm. Decaying cattail litter and water for 

experimental addition was collected from control mesocosms at the same time as the 

sediment cores. The initial nitrate-nitrogen concentration of water collected from control 

mesocosms was less than 0.5 mg L'^. Cattail litter collected was that which had been 

within the water column since the previous growing season. 

In the two treatments which included sediment, the water overlying the cores was 

carefully drawn off and replaced with 130 mis of water collected from control mesocosms 

amended with (99.7 atom %) to an initial concentration of approximately 9 mg 

NOg-N L"^. Cattail litter measured to provide approximately 200 cm^ of surface area 

was then added to half of these microcosms. For the treatment which included only litter, 

200 cm^ of litter was added to 130 mis of the amended water. Controls consisted of 130 

mis of the amended water in microcosms containing no sediment or decaying cattail litter. 

The microcosms were incubated in the dark at room temperature (20 °C). Water 

samples were collected daily for the analysis of nitrate-nitrogen. When the nitrate-nitrogen 

concentration in treated cores had fallen to below 0.5 mg L"^ the sediment cores were 

sacrificed, weighed, and the sediment plus overlying water was immediately frozen at 

-70°C in an ultrafreezer. The sediment plus overlying water was then lyophilized, 

reweighed, homogenized, subsampled, and finely ground using a mortar and pestle. 

Cattail litter was frozen at -70°C in an ultrafreezer, weighed, and finely ground in a 60 

mesh Wiley mill. 

Determination of percentages was carried out in the laboratory of Dr. Alfred 

Blackmer of the Department of Agronomy at Iowa State University. Procedures are as 

described by Sanchez and Blackmer (1988). Exchangeable ammonium-N and nitrate (plus 

nitrite)-N contents of each sediment sample were determined by extraction with 2 N KCl 

and steam distillation with magnesium oxide and Devarda alloy as described by Keeney 

and Nelson (1982). Because distillate from these analyses were used for 

determinations, 5 ml of an ammonium nitrate standard containing 15 ug ammonium-N 

ml"^ was added to each aliquot (20 ml) of sediment extract distilled. This practice assured 

that each sample contained enough N to be within the working range of the mass 

spectrometer used for ^^N determinations. Distillates from the first aliquots were collected 
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in boric acid indicator solution and then titrated with acid as described by Keeney and 

Nelson (1982). Distillates from the second aliquots were collected in 2 ml of 0.08 N 

H2SO4, concentrated by evaporation of water to a volume of about 2 ml, and stored for 

analysis of The permanganate-reduced iron modification of the Kjeldahl procedure 

(Bremner and Mulvaney 1982) was used to determine total nitrogen contents of sediment 

and plant tissue samples. 

Determinations of in sediments, sediment extracts, and plant samples were 

performed by reacting the concentrated distillates with sodium hypobromite in evacuated 

Rittenburg flasks as described by Hauck (1982) and injecting the resulting dinitrogen gas 

into a Varian MAT 250 mass spectrometer. Atom percentages in these distillates, 

concentrations of ^^N-derived nitrate and ammonium nitrogen, and concentrations of ^^N-

derived total nitrogen were calculated as in Sanchez and Blackmer (1988). 

Statistical calculations follow Steel and Torrie (1980) and Day and Quinn (1989). 

Analysis of variance and orthogonal planned comparisons were used to determine 

significance of treatments. Differences between means were considered significant at p _< 

0.05. 
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RESULTS AND DISCUSSION 

Measurements of dissolved oxygen profiles using microelectrodes demonstrate that 

the cattail litter provided anaerobic microzones necessary for nitrate reduction. Both field 

and laboratory experiments confirmed that plant litter promoted nitrate reduction. In both 

cases the observed nitrate loss rate was at least twice as high in the presence of cattail litter 

in addition to wetland sediment. ^^N tracer studies demonstrate that the percent of nitrate 

lost through denitrification was actually greater in those microcosms containing only cattail 

litter versus microcosms containing only sediment. 

Oxygen microprofiles at the sediment-water and cattail litter-water interfaces as 

measured using the oxygen microelectrodes demonstrate that anaerobic microzones 

necessary for denitrification occur both immediately within the sediment and at the surface 

of the decaying cattail litter (Figure 23). Oxygen was evenly distributed in the saturated 

water overlying the intact sediment core down to approximately 10 mm above the 

sediment-water interface at which point the oxygen concentration began to decrease. At 

roughly five mm above the sediment-water interface the oxygen concentration began to 

decrease rapidly. The gradient was steepest just above the sediment-water interface, below 

which the slope gradually decreased. The oxygen profile demonstrates that all the oxygen 

taken up by the sediment was consumed within a sediment layer only 2 mm thick. 

Oxygen concentrations demonstrated a similar pattern at the interface of the water 

with cattail litter, with a representative profile shown in Figure 24. At approximately 2 

mm from the litter-water interface the oxygen concentration began to decline very rapidly. 

This gradient was again steepest just above the litter-water interface, and all of the oxygen 

was consumed within this very thin layer with the surface of the litter being anaerobic. 

Previous studies have demonstrated that variations in oxygen concentration on 

sediment or detritus surfaces can be very rapid and may closely follow changing light 

intensities if photosynthetic microalgae are present (Jorgensen and Revsbech 1985). This is 

demonstrated in these studies by the profile depicted in Figure 25 where the cattail litter-

water interface was visibly colonized by epiphytic algae. When the oxygen profile was 

taken in the dark, the surface of the litter was anaerobic. When the profile of oxygen was 

measured in even dim light, photosynthetic oxygen production by epiphytic algae increased 

the oxygen concentration at the litter surface. However, even in the presence of 
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Figure 23. Replicate dissolved oxygen microprofiles measured at the sediment-water 
interface within a sediment-water microcosm. 
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Figure 24. Replicate dissolved oxygen microprofiles measured at the litter-water interface 
of decaying Typha litter. Profiles measured in the dark 
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Figure 25 Dissolved oxygen microprofiles measured at the litter-water interface of 
decaying Typha litter visibly colonized by epiphytic algae. Profile measured 
in the light aiid dark 
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photosynthetic oxygen production at the surface, the interior of the cattail litter remained 

anaerobic. 

Within enclosures placed in situ within the mesocosms, nitrate-nitrogen 

concentration within the overlying water declined much more rapidly in those enclosures 

containing the cattail litter (Figure 26). Rates of nitrate-nitrogen disappearance on a 

sediment area basis calculated over the first 24 hours were over 2.5 times greater in the 

presence of cattail litter (1.368 g N m"^ day"^, SEM 0.29 versus 0.539 g N m"^ day"^, 

SEM 0.054). 

Nitrate-nitrogen concentrations in the sediment-water microcosms decreased rapidly 

in the presence of sediment or cattail litter, with concentrations approaching detection 

limits after four days of incubation (Figure 27). Among the treatments, the nitrate-

nitrogen concentration declined the fastest in those microcosms which contained sediment 

plus cattail litter and slowest in microcosms containing only sediment. There was no 

significant difference in nitrate-nitrogen concentration in control cores after four days of 

incubation. 

Treatment differences in nitrate loss rate calculated over the first day of incubation 

were significant, with microcosms containing sediment plus cattail litter exhibiting a nitrate 

loss rate nearly twice that of either sediment or cattail litter alone (Figure 28). There was 

no significant difference in nitrate loss rate between microcosms containing only cattail 

litter or only sediment. 

There was substantial enrichment in the sediment total nitrogen and sediment 

ammonium fractions for both treatments containing sediment (Table 5). There was also 

substantial enrichment in the total nitrogen fraction of the cattail litter in both treatments in 

which it was included. When compared between treatments, the percent enrichment of the 

sediment ammonium fraction was significantly higher in those microcosms containing 

sediment only. Additionally, the percent enrichment in the total nitrogen fraction 

contained in the cattail litter was significantly higher in those microcosms containing only 

cattail litter compared to those microcosms containing sediment and cattail litter. 

The atom percent enrichment of each nitrogen fraction was combined with the mass 

of each fraction to calculate a mass balance of the amount of remaining in each 
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Figure 26. Nitrate-nitrogen concentrations in experimental enclosures with and without 
plant litter following experimental addition of nitrate. Enclosures were placed 
in situ within experimental wetland mesocosms. Error bars indicate i one 
standard error (n = 9) 
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Figure 27. Nitrate-nitrogen concentrations in sediment-water microcosms with and 
without sediment and/or plant litter following experimental addition of nitrate. 
Error bars indicate ± one standard error (n = 12) 
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Figure 28. Nitrate-nitrogen loss rate in sediment-water microcosms with and without 
sediment and/or plant litter following experimental addition of nitrate. Error 
bars indicate ± one standard error (n = 12) 



www.manaraa.com

64 

Table 5. atom percent enrichment of sediment nitrogen fractions and plant litter 
within sediment-water microcosms 

Treatment Fraction Atom % S.E.M. n 
Controls: Total 0.369 0.001 4 

Ammonium 0.381 0.007 3 
Nitrate 0.382 0.011 3 
Litter (Total) 0.372 0.001 4 

Sediment Total 0.481 0.007 12 
Ammonium 4.337 0.292 12 
Nitrate 38.949 6.714 7 

Sediment plus Total 0.411 0.003 12 
Litter Ammonium 1.006 0.007 12 

Nitrate 20.898 9.058 5 
Total (Litter) 1.475 0.109 12 

Litter Total (Litter) 2.067 0.168 12 
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fraction compared to the amount of added. The derived nitrogen in the organic 

nitrogen fraction in microcosms containing sediment was assumed to be the difference 

between derived nitrogen in the total nitrogen fraction minus the derived nitrogen 

in the ammonium and nitrate nitrogen fractions. Nitrogen lost as denitrification was 

assumed to be the difference between the amount of added and the sum of 

recovered in all fractions. There was no significant difference in the grams dry weight of 

added cattail litter in either of the treatments in which it was included. 

The tracer studies demonstrate that denitrification was clearly the dominant 

nitrate loss process within all three treatments (Figure 30) and ranged from 74.5 % in 

microcosms containing only sediment to 81.1% in microcosms containing only cattail 

litter. The overall treatment effect on percent of added lost through denitrification 

was significant and planned comparisons demonstrate that percent denitrification in those 

microcosms containing only cattail litter was significantly higher than in microcosms 

containing only sediment. This higher percent denitrification in microcosms containing 

only cattail litter versus only sediment may represent a greater competition for added 

from alternate nitrate transformation processes in the sediment. 

Littie of the added remained as at the end of incubation in any of 

the treatments (Figure 30). Amounts ranged from 0.2% in microcosms containing 

sediment plus cattail litter to 1.9% in microcosms containing only sediment. 

If it is assumed that the present as total nitrogen in the cattail litter is 

predominantiy organic nitrogen resulting from assimilation and immobilization by 

attached microbes, then there is no significant difference between the total amount of 

remaining as organic nitrogen between any of the three treatments. The difference between 

treatments, however, is apparent in the partitioning of the organic nitrogen fraction, likely 

related to the location of the attached microbial community. In microcosms which 

contained only sediment, 21.5%, of the added was present as labeled organic 

nitrogen within the sediment at the end of incubation, significantly higher than the 9.3% of 

added present as labeled organic nitrogen within the sediment in microcosms 

containing sediment plus cattail litter. In these microcosms, however, an additional 12.4% 

of the added was present as labeled total nitrogen within the cattail litter. In 

microcosms containing only cattail litter, 18.9% of the added was present as 
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Figure 29. Fate of following addition to sediment-water microcosms with and without sediment and/or litter. 
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labeled total nitrogen within the cattail litter at the end of incubation. This percentage was 

significantly greater than in microcosms containing sediment and cattail litter. 

Only a very small percent of the added was found as at the end 

of incubation, ranging from 0.3% in microcosms containing sediment plus cattail litter to 

2.0% in microcosms containing only sediment. This was, however, a significant 

difference between these two treatments. This small percent of added present as 

at the end incubation indicates that dissimilatory nitrate reduction to did 

not occur to a notable extent. 

These studies demonstrate that the primary role of decaying plant litter in the 

transformation and fate of nitrate in northern prairie wetlands is in providing substrate for 

attached microbial communities which produce anaerobic microzones that are sites for 

denitrification. In addition, the presence of plant litter may also increase the percent of 

nitrate that is lost through denitrification. Such microscale processes should also be 

considered for their management implications. For example, restored wetlands containing 

a large amount of standing vegetation and a large buildup of decaying plant litter would 

likely be much more efficient in nitrate removal, given sufficient contact between pollutant 

laden water and the substrate. Secondly, wetlands may become more efficient at removing 

nitrate after several growing seasons worth of litter accumulation and may likely take 

several years to reach a steady state with respect to their nitrate removal capacity. 
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INTRODUCTION 

The few studies of the cycling of nitrogen in northern prairie wetlands have 

generally demonstrated that natural or restored wetlands can serve, at least on a seasonal 

basis, as nitrogen sinks (van der Valk et al. 1979, Davis et al. 1981). Denitrification is 

generally cited as the primary reason these wetlands may serve as nitrogen sinks. 

However, as Neely and Baker (1989) note, denitrification is assumed to be an important 

process in northern prairie wetlands based largely on circumstantial evidence; first, that 

conditions in the wetlands are suitable for denitrification (anaerobic conditions and a large 

base of organic carbon) and, second, that nitrate disappears rapidly from water overlying 

wetland sediments. 

Wetlands within landscapes dominated by intensive row crop agriculture may 

frequently experience high nutrient loadings. For example, restored wetlands in the 

northern prairie region whose dominant water source is interrupted subsurface drainage 

may be exposed to very high loadings of non-point source nitrate. Numerous physical and 

biological factors will influence the dynamics of such nutrient loadings within these 

wetlands. In the case of nitrate, however, the effect of such high concentrations on its 

transformation and fate within northern prairie wetlands has not been documented. 

Denitrification rate may be influenced by such factors as available carbon, 

temperature, pH, oxygen concentration, redox potential, denitrifier activity and nitrate 

concentration (Tiedje 1988). The question regarding the dependence of denitrification rate 

on nitrate concentration has received considerable debate. Some authors consider that the 

rate of denitrification is independent of NOg'-N concentration (zero order) when an ample 

energy source is available and when the effect of nitrate diffusion is removed (Reddy et al 

1978, Phillips et al. 1978, Nielsen et al, 1990). Other investigators report that 

denitrification follows first-order or Michaelis-Menton kinetics with respect to nitrate 

concentration but exhibit a very low Km (Betlach and Tiedje 1981, Messer and Brezonik 

1984). Most studies considering the dependence of denitrification rate on nitrate 

concentration have been conducted using terrestrial soils, sediment slurries, or pure 

cultures. Few studies have been conducted on the relationship between nitrate in the 

overlying water and denitrification rates in intact aquatic systems. 
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In this study, the effect of nitrate concentration in the overlying water on the rate of 

nitrate reduction within northern prairie wetlands was investigated using intact sediment-

water microcosms. Additionally, the fate of the lost nitrate was documented using 
tracer techniques. 
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METHODS 

Detailed studies of nitrate transformation and fate were conducted using intact 

sediment-water microcosms and tracer techniques. The objectives of these studies 

were to determine the fate of externally loaded nitrate within these systems and to estimate 

the effects of the concentration of nitrate in the overlying water on the observed rate of 

nitrate disappearance. In the two separate experiments described, intact sediment cores 

were collected from Lonnevik Marsh, a recently restored northern prairie wetland in north-

central Iowa and from a subset of the experimental wetland mesocosms which had been 

configured as flow-through systems. A complete description of the Iowa State University 

Experimental Wetland Facility is given in Crumpton et al. {in press). 

Intact sediment cores were collected from Lonnevik marsh, a restored prairie 

pothole wetland in Wright County, lA, in August of 1989, Polycarbonate cylinders (5.1 

cm ID, 30.5 cm long) were pushed into the sediment, the top closed with a rubber stopper, 

and the column pulled out with the intact core of sediment, and the lower end stoppered. 

Upon return to the laboratory, the water overlying the cores was carefully drawn off and 

replaced with approximately 250 ml of water collected from the site in order to standardize 

initial conditions. The initial concentration of nitrate-nitrogen was less than 0.5 mg L"^. 

Additions of (7% enrichment) were made to randomly chosen replicate cores to 

achieve initial concentrations of approximately 1,3,6,9, and 12 mg NO3-N L'^. The 

cores were incubated aerobically in the dark in environmental chambers at 20 °C for 42 

hours. Samples of the overlying water were collected for analysis of NOg'-N at several 

times during incubation. Nitrate-nitrogen was assayed using a second-derivative 

spectrophotometric procedure (Crumpton et al. 1992). 

Following incubation the sediment and water contained in the microcosms was 

sacrificed and immediately frozen at -70°C in an ultrafreezer. The sediment was then 

lyophilized, homogenized, subsampled, and finely ground using a mortar and pestle. 

Determination of percentages was carried out in the laboratory of Dr. Alfred 

Blackmer of the Department of Agronomy at Iowa State University. Procedures used are 

as described by Sanchez and Blackmer (1988). Exchangeable ammonium-N and nitrate 

(plus nitrite)-N contents of each sediment sample were determined by extraction with 2 N 

KCl and steam distillation with magnesium oxide and Devarda alloy as described by 
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Keeney and Nelson (1982), Because distillates from these analyses were used for 

determinations, 5 ml of an ammonium nitrate standard containing 15 ug ammonium-N 

ml'l was added to each aliquot (20 ml) of sediment extract distilled. This practice assured 

that each sample contained enough N to be within the working range of the mass 

spectrometer used for determinations. Distillates from the first aliquots were collected 

in boric acid indicator solution and then titrated with acid as described by Keeney and 

Nelson (1982). Distillates from the second aliquots were collected in 2 ml of 0.08 N 

H2SO4, concentrated by evaporation of water to a volume of about 2 ml, and stored for 

analysis of ^^N. The permanganate-reduced iron modification of the Kjeldahl procedure 

(Bremner and Mulvaney 1982) was used to determine total nitrogen contents of sediment 

samples. 

Determinations of ^^N in sediments and sediment extracts were performed by 

reacting the concentrated distillates with sodium hypobromite in evacuated Rittenburg 

flasks as described by Hauck (1982) and injecting the resulting dinitrogen gas into a Varian 

MAT 250 mass spectrometer. Atom percentages ^^N in these distillates, concentrations of 

^^N-derived nitrate and ammonium nitrogen, and concentrations of ^^N-derived total 

nitrogen were calculated as in Sanchez and Blackmer (1988). 

In 1991 a subset of the experimental wetland mesocosms was configured as flow 

through systems in order to do longer term mass balance studies based on measured nitrate 

loading to and export from each mesocosm. ^^N tracer studies were performed on intact 

sediment cores collected from these flow-through mesocosms in September of 1991. 

Polycarbonate cylinders (5.1 cm ID, 30.5 cm long) were pushed into the sediment, the top 

closed with a rubber stopper, and the column pulled out with the intact core of sediment, 

and the lower end stoppered. Upon return to the laboratory, the cores were standardized to 

5 cm of intact sediment and placed in a plexiglass incubation chamber connected to a 

thermostated, circulating water bath. The incubation chamber was filled with water which 

was collected at the same time as the cores from control mesocosms to a level above the 

top of the microcosms. The water overlying the cores was bubbled with air for a short 

period to circulate water and standardize conditions. The water was then drawn down to 

approximately 142 ml in each of the microcosms. The initial nitrate-nitrogen concentration 

of the overlying water was less than 0.5 mg L"^. Additions of KNO3 were made to 

randomly chosen replicate cores to achieve initial concentrations of approximately 3, 15 
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and 21 mg NO3-N L"^. Addition of (99.7% enrichment) was also made to 

randomly chosen replicate cores to achieve an initial concentration of approximately 9 mg 

^^NOg-N L"^. The cores were incubated aerobically in the dark in the thermostated, 

circulating water bath at 20 °C until the concentration of NOg'-N approached detection 

limits (approximately 7.5 days). Samples of the overlying water were collected daily for 

analysis of NOg'-N. Nitrate-nitrogen was assayed using a second-derivative 

spectrophotometric procedure (Crumpton et al, 1992). 

Following incubation the sediment and water in those microcosms containing 

was sacrificed and immediately frozen at -70°C in an ultrafreezer. The sediment was then 

lyophilized, homogenized, subsampled, and finely ground using a mortar and pestle. 

Determination of percentages was as described above. 

Statistical calculations are as in Steel and Torrie (1980). Compared means were 

determined to be significantly different and p _< 0.05 for analysis of variance. 
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RESULTS AND DISCUSSION 

All results confirm the considerable capacity of northern prairie wetlands to 

transform nitrate. Even under highly aerobic conditions, nitrate concentrations declined 

rapidly in both microcosm experiments. Denitrification was the dominant nitrate loss 

process and rates were a function of the nitrate concentration in the overlying water over a 

wide range of concentrations. 

Within sediment-waiter microcosms collected from Lonnevik Marsh, nitrate 

concentration in the water overlying the intact cores declined rapidly over the course of the 

experiment. The rates of nitrate disappearance on a sediment area basis (g m"^ day"^) for 

the initial six hours of incubation versus the average concentration of NOg'-N during this 

period are shown in Figure 30. There was clearly a positive relationship between observed 

nitrate loss rate and the nitrogen concentration in the overlying water. 

The final atom percent enrichments in the NOg'-N, and total-N fractions 

of the control and 12 mg L"^ addition cores are shown in Table 6. There was 

significant enrichment in treated cores versus control cores in all three nitrogen 

fractions assayed. 

The atom percent enrichment of each nitrogen fraction was combined with the mass 

of each fraction and used to calculate a mass balance of the amount of ^^N remaining in 

each fraction compared to the amount of added. The derived nitrogen in the 

organic nitrogen fraction was assumed to be the difference between derived nitrogen 

in the total nitrogen fraction minus the derived nitrogen in the ammonium and nitrate 

fractions. Nitrogen lost as denitrification was assumed to be the difference between the 

amount of ^^N added and the sum of ^^N recovered in all fractions. 

Denitrification was confirmed to be the dominant loss process for externally loaded 

nitrate in this restored northern prairie wetland, accounting for approximately 55 percent of 

the ^^N03" removed from the overlying water (Figure 31). Nearly 34 percent of 

transformed ^^NOg" was found in the organic N fraction within the sediment and can be 

interpreted to have been predominantly assimilated and immobilized by the sediment 

microbial community. The remaining 11 % of the transformed ^^NOg" was found as 

and could be interpreted as ^^NOg" that was immobilized and subsequently 
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Figure 30. Nitrate-nitrogen loss versus nitrate concentration in the overlying water in 
sediment-water microcosms from Lonnevik Marsh. Data from the first six 
hours of incubation are shown. Error bars indicate _+ one standard error 
(n = 4) 
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Table 6. atom percent enrichment of sediment fractions within sediment-water 
microcosms from Lonnevik Marsh 

Treatment Fraction Atom % S.E.M. n 

Controls: Total 0.364 0.000 2 
Ammonium 0.361 0.000 2 
Nitrate 0.358 0.030 2 

12mgL-l  Tota l  0 .381 0 .001 4  
Ammonium 0.503 0.026 4 
Nitrate 4.576 0.676 4 
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DENIT ORGANIC 

Figure 31. Fate of following addition to sediment-water microcosms 
from Lonnevik Marsh. Percent is of added transformed, 
indicate +. one standard error (n as in Table 6) 

collected 
Error bars 
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mineralized. However, given the short duration of the incubation (42 hours), it is more 

likely that this represents predominantly dissimilatory NO3" reduction to NH^"^. 

Within sediment-water microcosms collected from the wetland mesocosms, nitrate-

nitrogen concentration in the water overlying the intact cores also declined rapidly for all 

treatments, approaching detection limits within 7.5 days of incubation (Figure 32). The 

rates of nitrate disappearance on a sediment area basis (g m"^ day"^) for the initial 17 

hours of incubation versus the average concentration of NOg'-N during this period are 

shown in Figure 33. Once again, even with nitrate concentrations in the overlying water as 

high as 21 mg L"^ NOg'-N, there was clearly a positive relationship between observed 

nitrate loss rate and the nitrogen concentration in the overlying water. 

The final atom percent enrichments in the NO^'-N, and total-N fractions 

of the control and 9 mg L"^ addition cores are shown in Table 7. There was 

significant enrichment in treated cores versus control cores in both the and 

total-N fractions. NOg'-N in control cores was below detection limits. Substantial 

enrichment was found in residual NOg'-N in the treated cores. A mass balance of the 

amount of remaining in each fraction compared to the amount of added was 

calculated as above. 

Denitrification was again deduced to be the dominant loss process for externally 

loaded nitrate within sediment-water microcosms from the experimental wetland 

mesocosms, accounting for approximately 78 percent of the removed from the 

overlying water (Figure 34). Nearly 19 percent of added ^^NOg" was found in the organic 

N fraction and assumed to have been predominantly assimilated and immobilized by the 

sediment microbial community. Only two percent of the ^^NOg" added to these systems 

was transformed to through either immobilization-mineralization or dissimilatory 

NO3" reduction to NH^"^. Less than 1 percent of the added ^^NOg" remained as 

^^NOg" after 7.5 days. 

The observed differences in the relative fates of externally loaded ^^NOg" between 

the restored northern prairie wetland and the experimental wetlands may be related to 

different nitrate exposure histories. At the time of sampling, the experimental wetland 

mesocosms had been exposed to elevated nitrate concentrations for 45 days as part of a 

longer term, flow through mass balance study. The nitrate exposure history of the 
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Figure 32. Nitrate-nitrogen concentration in sediment-water microcosms from flow 
-through mesocosms following experimental addition of nitrate. Error bars 
indicate +. one standard error (n= 9) 
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Figure 33 Nitrate-nitrogen loss versus nitrate concentration in the overlying water in 
sediment-water microcosms from flow-through mesocosms. Data from the first 
17 hours are shown. Error bars indicate +. one standard error (n = 9) 
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Table 7. atom percent enrichment of sediment fractions within sediment-water 
microcosms from flow-through mesocosms 

Treatment Fraction Atom % S.E.M. n 

Controls: Total 0.372 0.000 10 
Ammonium 0.372 0.001 5 
Nitrate N.D. 

9 mg L'^ Total 0.459 0.004 20 
Ammonium 3.748 0.502 10 
Nitrate 40.547 3.865 3 
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DENIT ORGANIC 

Figure 34. Fate of following addition to sediment-water microcosms collected 
from flow-through mesocosms. Percent is of added transformed. 
Error bars indicate +. one standard error (n as in Table 7) 
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sediment water systems taken from Lonnevik Marsh is less certain. However, the limited 

sampling that has been done at the site (data not included) indicates the sampling site 

within this system receives only very limited nitrate exposure. The concentration of nitrate 

at the site at the time of sampling, for instance, was less than 0.5 mg NO3-N 

As a result of the prior exposure to high concentrations of nitrate, the sediment 

water systems taken from the experimental wetland mesocosms may have a reduced 

assimilatory nitrogen demand (Isenhart 1992). Within Lonnevik Marsh, a larger unmet 

assimilatory nitrogen demand would be in direct competition with denitrifiers for added 

nitrate. This could account for lower percentages of added being denitrified and a 

greater percentage of added being assimilated and immobilized to organic N 

within this system. Alternatively, prior exposure to nitrate within the experimental 

wetlands may have significantly increased the activities and/or the population densities of 

denitrifying bacteria within these systems. 

Observed nitrate loss rates within sediment-water systems from both the restored 

northern prairie wetland and flow-through mesocosms are clearly related to the 

concentration of nitrate in the overlying water over a wide range of concentrations. This is 

consistent with models for denitrification in agricultural streams which suggest that in the 

presence of high nitrate loads, denitrification rates are controlled by the nitrate 

concentration in the overlying water and the effective length of the diffusion path between 

the overlying water and the primary site of denitrification in underlying anaerobic zones 

(Christensen et al 1990, Nielsen et al. 1990). 

These researchers suggest that the steep nitrate gradients in sediments and biofilms 

make it difficult to study substrate uptake kinetics of microbial mat and sediment 

communities as the substrate concentrations in the active layers may be quite different from 

the concentration in the overlying water. Their findings demonstrate that the kinetics of 

denitrification is zero order with respect to nitrate as the specific rate is constant with depth 

in the zone of denitrification. However, increases in the nitrate concentration of the 

overlying water will stimulate denitrification by extending the thickness of the 

denitrification zone with depth and not by increasing the specific activity. 

In aquatic systems dominated by external nitrate loads, as is the case in many 

northern prairie wetlands, nitrate loss rates are apparently a function of, and may often be 
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limited by, the nitrate concentration in the overlying water. This is a fundamental 

difference between these systems and most river, lake, and coastal marine sediments where 

nitrate produced in the sediment from mineralization and subsequent nitrification is the 

major substrate for denitrification (Seitzinger 1988). Furthermore, nitrate loss rates 

continued to increase with increasing nitrate concentration in the overlying water, even at 

concentrations in excess of 20 mg NO^'-N L"^. If increases in the nitrate concentration of 

the overlying water stimulate denitrification by extending the thickness of the 

denitrification zone with depth, it seems reasonable that at some concentration this zone 

would be extended deep enough so that organic carbon or denitrifier activity would be 

limiting. In these studies conducted with sediments from northern prairie wetlands, 

however, this concentration was apparently not exceeded. 
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GENERAL SUMMARY 

Recent initiatives in wetlands restoration offer a unique opportunity to utilize 

restored or constructed wetlands as nutrient sinks for non-point source pollution in regions 

of row-crop agriculture. A lack of research on the mechanisms of nitrogen loss within 

freshwater wetlands, however, has inhibited the scientific community from making a 

credible assessment of the overall role of freshwater wetlands as sinks for non-point source 

nitrate. 

The research presented here addressed the transformation and fate of nitrate in 

northern prairie wetlands. The research utilized a combination of wetland mesocosms and 

microcosms to conduct controlled and replicated experiments involving nitrate 

transformations with the overall objectives to 1) estimate the assimilative capacities of 

restored or natural northern prairie wetlands for nitrate, 2) determine the fate of 

transformed nitrate, and 3) begin to identify the factors which limit the sustained abilities 

of northern prairie wetlands to act as sinks for nitrate. 

Results of these studies demonstrate the considerable capacity of northern prairie 

wetlands to transform nitrate. Even under highly aerobic conditions, nitrate concentrations 

decline rapidly in all of the mesocosm and microcosm experiments. In studies conducted 

within experimental wetland mesocosms, nitrate concentrations were consistently reduced 

from near 10 mg N L"^ to below detection limits within five days. Rates of nitrate loss on 

a sediment area basis often exceeded one gram NOg'-N m"^ day"^ in the presence of 

several mg NOg'-N L"^ and are among the highest recorded in any wetland system. 

tracer studies confirm denitrification to be the dominant fate of externally 

loaded nitrate in northern prairie wetlands, generally accounting for near 80 % of the 

removed from the overlying water in both experimental wetland mesocosms and 

microcosms. The rest of the removed from the overlying water was immobilized. 

Approximately 14% of the added was immobilized within the various live cattail 

fractions and their associated microbes. The balance was immobilized in the sediment and 

submersed litter, most likely by microbes at the sediment-water interface and attached to 

decaying plant litter. Dissimilatory nitrate reduction to ammonium did not occur to a 

significant extent. There was no effect of chronic versus intermediate nitrate loadings on 
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denitrification. The principal effect of chronic nitrate loading was to reduce the 

assimilatory nitrogen demand. 

Observed nitrate loss rates are clearly a function of the concentration of nitrate in 

the overlying water over a wide range of concentrations. This is consistent with models 

for denitrification in agricultural streams which suggest that in the presence of high nitrate 

loads, denitrification rates are controlled by the nitrate concentration in the overlying water 

and the effective length of the diffusion path between the overlying water and the primary 

site of denitrification in underlying anaerobic zones (Christensen et al 1990, Nielsen et al. 

1990). Increases in the nitrate concentration of the overlying water will stimulate 

denitrification by increasing the nitrate diffusion gradient which results in a higher nitrate 

transport rate to anaerobic zones. 

Cattail litter plays an important role in the transformation and fate of nitrate. 

Measurements of dissolved oxygen profiles using microelectrodes demonstrate that the 

cattail litter provided anaerobic microzones necessary for nitrate reduction. Both field and 

laboratory experiments confirmed the promotion of nitrate reduction by plant litter. In 

both cases the observed nitrate loss rate was at least twice as high in the presence of cattail 

litter in addition to wetland sediment. tracer studies demonstrate that the percent of 

nitrate lost through denitrification was actually greater in those microcosms containing only 

cattail litter versus microcosms containing only sediment. 

Future research with respect to non-point source nutrients within northern prairie 

wetlands should focus on the continued determination of the effects of temperature, nitrate 

concentration, and plant litter on the transformation and fate of externally loaded nitrate in 

freshwater wetlands. An eventual goal should be to combine these results in the production 

of models of areal nitrate flux which can be combined with models of wetland hydrology 

and loading patterns to produce general models of nitrate loss and assimilative capacity for 

freshwater wetlands. 
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